Function Support in \(\KaTeX\)

This is a list of TeX functions supported by KaTeX. It is sorted into logical groups.

For a list of things that are not (yet) in KaTeX, there is a wiki page.

Accents

\(a'\) a' \(\grave{a}\) \grave{a} \(\overleftarrow{AB}\) \overleftarrow{AB} \(\overrightarrow{AB}\) \overrightarrow{AB}
\(a''\) a'' \(\hat{\theta}\) \hat{\theta} \(\underleftarrow{AB}\) \underleftarrow{AB} \(\underrightarrow{AB}\) \underrightarrow{AB}
\(a^{\prime}\) a^{\prime} \(\widehat{ac}\) \widehat{ac} \(\overleftrightarrow{AB}\) \overleftrightarrow{AB} \(\overbrace{AB}\) \overbrace{AB}
\(\acute{a}\) \acute{a} \(\mathring{g}\) \mathring{g} \(\underleftrightarrow{AB}\) \underleftrightarrow{AB} \(\underbrace{AB}\) \underbrace{AB}
\(\bar{y}\) \bar{y} \(\tilde{a}\) \tilde{a} \(\overgroup{AB}\) \overgroup{AB} \(\overlinesegment{AB}\) \overlinesegment{AB}
\(\breve{a}\) \breve{a} \(\widetilde{ac}\) \widetilde{ac} \(\undergroup{AB}\) \undergroup{AB} \(\underlinesegment{AB}\) \underlinesegment{AB}
\(\check{a}\) \check{a} \(\vec{F}\) \vec{F} \(\overleftharpoon{ac}\) \overleftharpoon{ac} \(\overrightharpoon{ac}\) \overrightharpoon{ac}
\(\dot{a}\) \dot{a} \(\overline{AB}\) \overline{AB} \(\Overrightarrow{AB}\) \Overrightarrow{AB} \(\utilde{AB}\) \utilde{AB}
\(\ddot{a}\) \ddot{a} \(\underline{AB}\) \underline{AB}

Accent functions inside \text{…}

\(\text{\'{a}}\) \'{a} \(\text{\~{a}}\) \~{a} \(\text{\.{a}}\) \.{a} \(\text{\H{a}}\) \H{a}
\(\text{\`{a}}\) \`{a} \(\text{\={a}}\) \={a} \(\text{\"{a}}\) \"{a} \(\text{\v{a}}\) \v{a}
\(\text{\^{a}}\) \^{a} \(\text{\u{a}}\) \u{a} \(\text{\r{a}}\) \r{a}

See also letters.

Delimiters

\((\,)\) ( ) \(\lgroup\:\rgroup\) \lgroup
\rgroup
\(\lceil\:\rceil\) \lceil
\rceil
\(\uparrow\) \uparrow
\([\:]\) [ ] \(\lbrack\:\rbrack\) \lbrack
\rbrack
\(\lfloor\:\rfloor\) \lfloor
\rfloor
\(\downarrow\) \downarrow
\(\{\,\}\) \{ \} \(\lbrace\:\rbrace\) \lbrace
\rbrace
\(\lmoustache\:\rmoustache\) \lmoustache
\rmoustache
\(\updownarrow\) \updownarrow
\(⟨\:⟩\) ⟨ ⟩ \(\langle\:\rangle\) \langle
\rangle
\(\lt\:\gt\) \lt
\gt
\(\Uparrow\) \Uparrow
\(|\) | \(\vert\) \vert \(\ulcorner \urcorner\) \ulcorner
\urcorner
\(\Downarrow\) \Downarrow
\(\|\) \| \(\Vert\) \Vert \(\llcorner \lrcorner\) \llcorner
\lrcorner
\(\Updownarrow\) \Updownarrow
\(\lvert\;\rvert\) \lvert
\rvert
\(\lVert\;\rVert\) \lVert
\rVert
\left. \right.
\(\backslash\) \backslash

Delimiter Sizing

\(\left(\LARGE{AB}\right)\) \left( \LARGE{AB} \right) \left \big \bigl \bigr
\middle \Big \Bigl \Bigr
\(( \big( \Big( \bigg( \Bigg(\) ( \big( \Big( \bigg( \Bigg( \right \bigg \biggl \biggr
\Bigg \Biggl \Biggr

Environments

\(\begin{matrix} a & b \\ c & d \end{matrix}\)
\begin{matrix}
   a & b \\
   c & d
\end{matrix}
\(\begin{array}{c|c} a & b \\ c & d \end{array}\)
\begin{array}{c|c}
   a & b \\
   c & d
\end{array}
\(\begin{aligned} a&=b+c \\ d+e&=f \end{aligned}\)
\begin{aligned}
   a&=b+c \\
   d+e&=f
\end{aligned}
\(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\)
\begin{pmatrix}
   a & b \\
   c & d
\end{pmatrix}
\(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\)
\begin{bmatrix}
   a & b \\
   c & d
\end{bmatrix}
\(\begin{alignedat}{2}10&x+&3&y=2\\3&x+&13&y=4\end{alignedat}\)
\begin{alignedat}{2}
   10&x+ &3&y = 2 \\
    3&x+&13&y = 4
\end{alignedat}
\(\begin{vmatrix} a & b \\ c & d \end{vmatrix}\)
\begin{vmatrix}
   a & b \\
   c & d
\end{vmatrix}
\(\begin{Vmatrix} a & b \\ c & d \end{Vmatrix}\)
\begin{Vmatrix}
   a & b \\
   c & d
\end{Vmatrix}
\(\begin{gathered} a=b \\ e=b+c \end{gathered}\)
\begin{gathered}
   a=b \\
   e=b+c
\end{gathered}
\(\begin{Bmatrix} a & b \\ c & d \end{Bmatrix}\)
\begin{Bmatrix}
   a & b \\
   c & d
\end{Bmatrix}
\(x = \begin{cases} a &\text{if } b \\ c &\text{if } d \end{cases}\)
x = \begin{cases}
   a &\text{if } b  \\
   c &\text{if } d
\end{cases}

KaTeX also supports {darray} and {dcases}.

Acceptable line separators include: \\, \cr, and \cr[distance]. Distance can be written with any of the KaTeX units.

The {array} environment does not yet support \hline.

Greek Letters

Direct Input: Γ Δ Θ Λ Ξ Π Σ Υ Φ Ψ Ω
α β γ δ ϵ ζ η θ ι κ λ μ ν ξ o π ρ σ τ υ ϕ χ ψ ω ε ϑ ϖ ϱ ς φ
Γ \Gamma Δ \Delta Θ \Theta Λ \Lambda
Ξ \Xi Π \Pi Σ \Sigma Υ \Upsilon
Φ \Phi Ψ \Psi Ω \Omega
Γ \varGamma Δ \varDelta Θ \varTheta Λ \varLambda
Ξ \varXi Π \varPi Σ \varSigma Υ \varUpsilon
Φ \varPhi Ψ \varPsi Ω \varOmega
α \alpha β \beta γ \gamma δ \delta
ϵ \epsilon ζ \zeta η \eta θ \theta
ι \iota κ \kappa λ \lambda μ \mu
ν \nu ξ \xi o \omicron π \pi
ρ \rho σ \sigma τ \tau υ \upsilon
ϕ \phi χ \chi ψ \psi ω \omega
ε \varepsilon ϰ \varkappa ϑ \vartheta ϖ \varpi
ϱ \varrho ς \varsigma φ \varphi ϝ \digamma

Other Letters

\(\imath\) \imath \(\jmath\) \jmath \aleph \beth \gimel
\daleth ð \eth \Finv \Game \ell
\hbar \hslash \Im \Re \wp
\partial \nabla \(\Bbbk\) \Bbbk
Direct Input: ℂ ℍ ℕ ℙ ℚ ℝ ℤ ∂ ð ∇ ℑ ℓ ℘ ℜ Ⅎ ℵ ℶ ℷ ℸ ⅁

Letters inside \text{}

\text{…} will accept functions: \aa \AA \ae \AE \oe \OE \o \O \ss \i \j
… and return them as: \(\text{\aa\: \AA\: \ae\: \AE\: \oe\: \OE\: \o\: \O\: \ss\: \i\: \j}\)

\text{…} will also accept Unicode characters from:

Script Unicode Range Script Unicode Range
Latin-1 0080 – 00FF Malayalam 0D00 – 0D7F
Latin
Extended A
0100 – 017F Sinhala 0D80 – 0DFF
Latin
Extended B
0180 – 024F Thai 0E00 – 0E7F
Cyrillic 0400 – 04FF Lao 0E80 – 0EFF
Devanagari 0900 – 097F Tibetan 0F00 – 0FFF
Bengali 0980 – 09FF Georgian 10A0 – 10FF
Gurmukhi 0A00 – 0A7F CJK symbols and punctuation 3000 – 303F
Gujarati 0A80 – 0AFF Hiragana 3040 – 309F
Oriya 0B00 – 0B7F Katakana 30A0 – 30FF
Tamil 0B80 – 0BFF CJK ideograms 4E00 – 9FAF
Telugu 0C00 – 0C7F Hangul AC00 – D7AF
Kannada 0C80 – 0CFF Full width punctuation FF00 – FF60

Annotation

\(\cancel{5}\) \cancel{5} \(\overbrace{a+b+c}^{\text{note}}\) \overbrace{a+b+c}^{\text{note}}
\(\bcancel{5}\) \bcancel{5} \(\underbrace{a+b+c}_{\text{note}}\) \underbrace{a+b+c}_{\text{note}}
\(\xcancel{ABC}\) \xcancel{ABC} \(\boxed{\pi = \frac c d}\) \boxed{\pi=\frac c d}
\(\sout{abc}\) \sout{abc}
\(\not =\) \not =

Overlap

\({=}\mathllap{/\,}\) {=}\mathllap{/\,} \(\left(x^{\smash{2}}\right)\) \left(x^{\smash{2}}\right)
\(\mathrlap{\,/}{=}\) \mathrlap{\,/}{=}    \(\sqrt{\smash[b]{y}}\) \sqrt{\smash[b]{y}}
\( \displaystyle \sum_{\mathclap{1\le i\le j\le n}} x_{ij}\) \sum_{\mathclap{1\le i\le j\le n}} x_{ij}

KaTeX also supports \llap, \rlap, and \clap, but they will take only text, not math, as arguments.

Spacing

Function Produces Function Produces
\! – ³∕₁₈ em space \kern{distance} space, width = distance
\, ³∕₁₈ em space \mkern{distance} space, width = distance
\thinspace ³∕₁₈ em space \skip{distance} space, width = distance
\: ⁴∕₁₈ em space \mskip{distance} space, width = distance
\medspace ⁴∕₁₈ em space \hspace{distance} space, width = distance
\; ⁵∕₁₈ em space \hspace*{distance} space, width = distance
\thickspace ⁵∕₁₈ em space \phantom{content} space the width and height of content
\enspace ½ em space \hphantom{content} space the width of content
\quad 1 em space \vphantom{content} a strut the height of content
\qquad 2 em space
~ non-breaking space
\space non-breaking space
\nobreakspace non-breaking space
\space non-breaking space

Notes:

{distance} will accept any of the KaTeX units.

\kern, \mkern, and \hspace accept unbraced distances, as in: \kern1em.

\mkern and \mskip will not work in text mode and both will write a console warning for any unit except mu.


Vertical Layout

\(x_n\) x_n \(\stackrel{!}{=}\) \stackrel{!}{=} \( a \atop b \) a \atop b
\(e^x\) e^x \(\overset{!}{=}\) \overset{!}{=} \(a\raisebox{0.25em}{b}c\)  a\raisebox{0.25em}{b}c
\(_u^o\) _u^o  \(\underset{!}{=}\) \underset{!}{=} 

Also see environments.

Logic and Set Theory

\forall \complement \therefore ¬ \neg or \lnot
\exists \subset \because \emptyset or \varnothing
\nexists \supset \mapsto
\in \mid \to \implies
\notin \land \gets \impliedby
\ni \lor \leftrightarrow \iff
\(\notni\) \notni
Direct Input: ∀ ∴ ∁ ∵ ∃ ∣ ∈ ∉ ∋ ⊂ ⊃ ∧ ∨ ↦ → ← ↔ ℂ ℍ ℕ ℙ ℚ ℝ ℤ

See also relations and binary operators.

Macros

Before macros can be used, they must be defined in the KaTeX rendering options. Available functions include:

\mathchoice \TextOrMath \@ifstar \@ifnextchar \@firstoftwo \@secondoftwo \relax

@ is a valid character for commands, as if \makeatletter were in effect.

Big Operators

\sum \prod \bigvee \bigotimes
\int \coprod \bigwedge \bigoplus
\iint \intop \bigcap \bigodot
\iiint \smallint \bigcup \biguplus
\oint \bigsqcup
Direct Input: ∫ ∬ ∭ ∮ ∏ ∐ ∑ ⋀ ⋁ ⋂ ⋃ ⨀ ⨁ ⨂ ⨄ ⨆

Binary Operators

+ + \cdot \gtrdot \(x \pmod a\) x \pmod a
- \cdotp \intercal \(x \pod a\) x \pod a
/ / \(\centerdot\) \centerdot \land \rhd
* \circ \leftthreetimes \rightthreetimes
⨿ \amalg \circledast . \ldotp \rtimes
& \And \circledcirc \lor \setminus
\ast \circleddash \lessdot \(\smallsetminus\) \smallsetminus
\barwedge \Cup \lhd \sqcap
\bigcirc \cup \ltimes \sqcup
mod \bmod \curlyvee mod \mod × \times
\boxdot \curlywedge \mp \unlhd
\boxminus ÷ \div \odot \unrhd
\boxplus \divideontimes \ominus \uplus
\boxtimes \dotplus \oplus \vee
\bullet \doublebarwedge \otimes \veebar
\Cap \doublecap \oslash \wedge
\cap \doublecup ± \pm \wr
Direct Input: + - / * ⋅ ± × ÷ ∓ ∔ ∧ ∨ ∩ ∪ ≀ ⊎ ⊓ ⊔ ⊕ ⊖ ⊗ ⊘ ⊙ ⊚ ⊛ ⊝ ⊞ ⊟ ⊠ ⊡ ⊺ ⊻ ⊼ ⋇ ⋉ ⋊ ⋋ ⋌ ⋎ ⋏ ⋒ ⋓ ⩞

Binomial Coefficients

\(\binom{n}{k}\) \binom{n}{k} \(\dbinom{n}{k}\) \dbinom{n}{k} \(\left\langle n \atop k \right\rangle\) \left\langle
n \atop k
\right\rangle
\({n}\choose{k}\) {n}\choose{k} \(\tbinom{n}{k}\) \tbinom{n}{k}

Fractions

\(\frac{a}{b}\) \frac{a}{b} \(\dfrac{a}{b}\) \dfrac{a}{b} \({a}/{b}\) {a}/{b}
\({a}\over{b}\) {a}\over{b} \(\tfrac{a}{b}\) \tfrac{a}{b}

Math Operators

\(\operatorname{asin} x\) \operatorname{asin} x
arcsin \arcsin cotg \cotg ln \ln det \det
arccos \arccos coth \coth log \log gcd \gcd
arctan \arctan csc \csc sec \sec inf \inf
arctg \arctg ctg \ctg sin \sin lim \lim
arcctg \arcctg cth \cth sinh \sinh lim inf \liminf
arg \arg deg \deg sh \sh lim sup \limsup
ch \ch dim \dim tan \tan max \max
cos \cos exp \exp tanh \tanh min \min
cosec \cosec hom \hom tg \tg Pr \Pr
cosh \cosh ker \ker th \th sup \sup
cot \cot lg \lg

Functions on the right side of this table can take \limits.

Sqrt

\(\sqrt{x}\)  \sqrt{x}
\(\sqrt[3]{x}\)  \sqrt[3]{x}

Relations

\(\stackrel{!}{=}\) \stackrel{!}{=}
= = \curlyeqsucc \gtrapprox \perp \succapprox
< < \dashv \gtreqless \pitchfork \succcurlyeq
> > \(\dblcolon\) \dblcolon \gtreqqless \prec \succeq
: : \doteq \gtrless \precapprox \succsim
\approx \Doteq \gtrsim \preccurlyeq \Supset
\approxeq \doteqdot \in \preceq \supset
\asymp \eqcirc \Join \precsim \supseteq
\backepsilon \(\eqcolon\) \eqcolon \le \propto \supseteqq
\backsim \(\Eqcolon\) \Eqcolon \leq \risingdotseq \thickapprox
\backsimeq \(\eqqcolon\) \eqqcolon \leqq \shortmid \thicksim
\between \(\Eqqcolon\) \Eqqcolon \leqslant \shortparallel \trianglelefteq
\bowtie \eqsim \lessapprox \sim \triangleq
\bumpeq \eqslantgtr \lesseqgtr \simeq \trianglerighteq
\Bumpeq \eqslantless \lesseqqgtr \(\smallfrown\) \smallfrown \varpropto
\circeq \equiv \lessgtr \(\smallsmile\) \smallsmile \vartriangle
\(\colonapprox\) \colonapprox \fallingdotseq \lesssim \smile \vartriangleleft
\(\Colonapprox\) \Colonapprox \frown \ll \sqsubset \vartriangleright
\(\coloneq\) \coloneq \ge \lll \sqsubseteq \(\vcentcolon\) \vcentcolon
\(\Coloneq\) \Coloneq \geq \llless \sqsupset \vdash
\(\coloneqq\) \coloneqq \geqq < \lt \sqsupseteq \vDash
\(\Coloneqq\) \Coloneqq \geqslant \mid \Subset \Vdash
\(\colonsim\) \colonsim \gg \models \subset \Vvdash
\(\Colonsim\) \Colonsim \ggg \multimap \subseteq \(\)
\cong \gggtr \owns \subseteqq \(\)
\curlyeqprec > \gt \parallel \succ \(\)
Direct Input: = < > : ∈ ∋ ∝ ∼ ∽ ≂ ≃ ≅ ≈ ≊ ≍ ≎ ≏ ≐ ≑ ≒ ≓ ≖ ≗ ≜ ≡ ≤ ≥ ≦ ≧ ≫ ≬ ≳ ≷ ≺ ≻ ≼ ≽ ≾ ≿ ⊂ ⊃ ⊆ ⊇ ⊏ ⊐ ⊑ ⊒ ⊢ ⊣ ⊩ ⊪ ⊸ ⋈ ⋍ ⋐ ⋑ ⋔ ⋙ ⋛ ⋞ ⋟ ⌢ ⌣ ⩾ ⪆ ⪌ ⪕ ⪖ ⪯ ⪰ ⪷ ⪸ ⫅ ⫆ ≔ ≕ ⩴

Negated Relations

\(\not =\) \not =
\gnapprox \ngeqslant \nsubseteq \precneqq
\gneq \ngtr \nsubseteqq \precnsim
\gneqq \nleq \nsucc \subsetneq
\gnsim \nleqq \nsucceq \subsetneqq
\gvertneqq \nleqslant \nsupseteq \succnapprox
\lnapprox \nless \nsupseteqq \succneqq
\lneq \nmid \ntriangleleft \succnsim
\lneqq \notin \ntrianglelefteq \supsetneq
\lnsim \(\notni\) \notni \ntriangleright \supsetneqq
\lvertneqq \nparallel \ntrianglerighteq \varsubsetneq
\ncong \nprec \nvdash \varsubsetneqq
\ne \npreceq \nvDash \varsupsetneq
\neq \nshortmid \nVDash \varsupsetneqq
\ngeq \nshortparallel \nVdash
\ngeqq \nsim \precnapprox
Direct Input: ∉ ∤ ∦ ≁ ≆ ≠ ≨ ≩ ≮ ≯ ≰ ≱ ⊀ ⊁ ⊈ ⊉ ⊊ ⊋ ⊬ ⊭ ⊮ ⊯ ⋠ ⋡ ⋦ ⋧ ⋨ ⋩ ⋬ ⋭ ⪇ ⪈ ⪉ ⪊ ⪵ ⪶ ⪹ ⪺ ⫋ ⫌

Arrows

\circlearrowleft \Leftarrow \looparrowright \rightrightarrows
\circlearrowright \leftarrowtail \Lsh \rightsquigarrow
\curvearrowleft \leftharpoondown \mapsto \Rrightarrow
\curvearrowright \leftharpoonup \nearrow \Rsh
\dashleftarrow \leftleftarrows \nleftarrow \searrow
\dashrightarrow \leftrightarrow \nLeftarrow \swarrow
\downarrow \Leftrightarrow \nleftrightarrow \to
\Downarrow \leftrightarrows \nLeftrightarrow \twoheadleftarrow
\downdownarrows \leftrightharpoons \nrightarrow \twoheadrightarrow
\downharpoonleft \leftrightsquigarrow \nRightarrow \uparrow
\downharpoonright \Lleftarrow \nwarrow \Uparrow
\gets \longleftarrow \restriction \updownarrow
\hookleftarrow \Longleftarrow \rightarrow \Updownarrow
\hookrightarrow \longleftrightarrow \Rightarrow \upharpoonleft
\iff \Longleftrightarrow \rightarrowtail \upharpoonright
\impliedby \longmapsto \rightharpoondown \upuparrows
\implies \longrightarrow \rightharpoonup
\leadsto \Longrightarrow \rightleftarrows
\leftarrow \looparrowleft \rightleftharpoons
Direct Input: ← ↑ → ↓ ↔ ↕ ↖ ↗ ↘ ↙ ↚ ↛ ↞ ↠ ↢ ↣ ↦ ↩ ↪ ↫ ↬ ↭ ↮ ↰ ↱ ↶ ↷ ↺ ↻ ↼ ↽ ↾ ↾ ↿ ⇀ ⇁ ⇂ ⇃ ⇄ ⇆ ⇇ ⇈ ⇉ ⇊ ⇋ ⇌ ⇍ ⇎ ⇏ ⇐ ⇑ ⇒ ⇓ ⇔ ⇕ ⇚ ⇛ ⇝ ⇠ ⇢ ⟵ ⟶ ⟷ ⟸ ⟹ ⟺ ⟼

Extensible Arrows

\(\xrightarrow{over}\) \xrightarrow{over} \(\xRightarrow{abc}\) \xRightarrow{abc} \(\xrightharpoonup{abc}\) \xrightharpoonup{abc}
\(\xrightarrow[under]{over}\) \xrightarrow[under]{over} \(\xmapsto{abc}\) \xmapsto{abc} \(\xrightharpoondown{abc}\) \xrightharpoondown{abc}
\(\xleftarrow{abc}\) \xleftarrow{abc} \(\xLeftarrow{abc}\) \xLeftarrow{abc} \(\xleftharpoonup{abc}\) \xleftharpoonup{abc}
\(\xleftrightarrow{abc}\) \xleftrightarrow{abc} \(\xLeftrightarrow{abc}\) \xLeftrightarrow{abc} \(\xleftharpoondown{abc}\) \xleftharpoondown{abc}
\(\xhookleftarrow{abc}\) \xhookleftarrow{abc} \(\xhookrightarrow{abc}\) \xhookrightarrow{abc} \(\xrightleftharpoons{abc}\) \xrightleftharpoons{abc}
\(\xtwoheadrightarrow{abc}\) \xtwoheadrightarrow{abc} \(\xlongequal{abc}\) \xlongequal{abc} \(\xleftrightharpoons{abc}\) \xleftrightharpoons{abc}
\(\xtwoheadleftarrow{abc}\) \xtwoheadleftarrow{abc} \(\xtofrom{abc}\) \xtofrom{abc}

Extensible arrows all can take an optional argument in the same manner as \xrightarrow[under]{over}.

Class Assignment

\mathbin \mathclose \mathinner \mathop
\mathopen \mathord \mathpunct \mathrel

Color

As of KaTeX 0.8.1, the behavior of \color depends on the setting of rendering option colorIsTextColor.

When colorIsTextColor is set to: false (default) true
\color behaves as it does in: LaTeX MathJax
(or KaTeX pre 0.8.1)
That is, \color: … acts like a switch. … expects content to be a function argument.
Examples: \(\color{blue} F=ma\) \color{blue} F=ma \(\textcolor{blue}{F=ma}\) \color{blue}{F=ma}
\(\color{#228B22} F=ma \) \color{#228B22} F=ma \(\textcolor{#228B22}{F=ma}\) \color{#228B22}{F=ma}

Other KaTeX color functions always expect the content to be a function argument.

\(\textcolor{blue}{F=ma}\) \textcolor{blue}{F=ma}
\(\textcolor{#228B22}{F=ma}\) \textcolor{#228B22}{F=ma}
\(\colorbox{aqua}{A}\) \colorbox{aqua}{A}
\(\fcolorbox{red}{aqua}{A}\) \fcolorbox{red}{aqua}{A}

For color definition, KaTeX color functions will accept the standard HTML predefined color names. They will also accept an RGB argument in CSS hexa­decimal style.

Font

AB \mathrm{AB} AB \mathbf{AB} AB \mathit{AB} AB \mathsf{AB} AB \mathtt{AB}
AB \textrm{AB} AB \textbf{AB} AB \textit{AB} AB \textsf{AB} AB \texttt{AB}
AB \rm{AB} AB \bf{AB} AB \it{AB} AB \sf{AB} AB \tt{AB}
AB \textnormal{AB} AB \bold{AB} AB \Bbb{AB} AB \mathcal{AB} AB \frak{AB}
AB \text{AB} AB \boldsymbol{AB} AB \mathbb{AB} AB \mathscr{AB} AB \mathfrak{AB}
AB \bm{AB}

One can stack font family, font weight, and font shape by using the \textXX versions of the font functions. So \textsf{\textbf{H}} will produce \(\textsf{\textbf{H}}\). The other versions do not stack, e.g., \mathsf{\mathbf{H}} will produce \(\mathsf{\mathbf{H}}\).

Size

\(\Huge AB\) \Huge AB \(\normalsize AB\) \normalsize AB
\(\huge AB\) \huge AB \(\small AB\) \small AB
\(\LARGE AB\) \LARGE AB \(\footnotesize AB\) \footnotesize AB
\(\Large AB\) \Large AB \(\scriptsize AB\) \scriptsize AB
\(\large AB\) \large AB \(\tiny AB\) \tiny AB

Style

\(\displaystyle\sum_{i=1}^n\) \displaystyle\sum_{i=1}^n
\(\textstyle\sum_{i=1}^n\) \textstyle\sum_{i=1}^n
\(\scriptstyle x\) \scriptstyle x The size of a first sub/superscript
\(\scriptscriptstyle x\) \scriptscriptstyle x The size of subsequent sub/superscripts
\(\lim\limits_x\) \lim\limits_x
\(\lim\nolimits_x\) \lim\nolimits_x
\(\verb! x^2 !\) \verb!x^2!
\(\text{x}\) \text{x}

\text{…} will accept nested $…$ fragments and render them in math mode.

\text{…} will render an extended range of characters. See Letters inside \text.

Symbols and Punctuation

% comment \Box \dots \checkmark
% \% \square \cdots \dag
# \# \blacksquare \ddots \dagger
& \& \(\triangle\) \triangle \ldots \textdagger
_ \_ \(\triangledown\) \triangledown \vdots \ddag
_ \textunderscore \(\triangleleft\) \triangleleft \mathellipsis \ddagger
-- \(\triangleright\) \triangleright \textellipsis \textdaggerdbl
\textendash \(\bigtriangledown\) \bigtriangledown \flat $ \$
--- \(\bigtriangleup\) \bigtriangleup \natural $ \textdollar
\textemdash \blacktriangle \sharp £ \pounds
` \blacktriangledown ® \circledR £ \textsterling
\textquoteleft \blacktriangleleft \circledS ¥ \yen
\(\text{\lq}\) \text{\lq} \blacktriangleright \clubsuit \surd
\textquoteright \diamond \diamondsuit ° \degree
\(\text{\rq}\) \text{\rq} \Diamond \heartsuit \diagdown
\textquotedblleft \lozenge \spadesuit \diagup
" " \blacklozenge \angle \mho
\textquotedblright \star \measuredangle \maltese
: \colon \bigstar \sphericalangle \(\text{\P}\) \text{\P}
\backprime | \textbar \top \(\text{\S}\) \text{\S}
\prime \textbardbl \bot \nabla
< \textless { \textbraceleft } \textbraceright \infty
> \textgreater
\(\KaTeX\) \KaTeX \(\LaTeX\) \LaTeX \(\TeX\) \TeX
Direct Input: £ ¥ ∇ ∞ · ∠ ∡ ∢ ♠ ♡ ♢ ♣ ♭ ♮ ♯ ✓

Units

In KaTeX, units are proportioned as they are in TeX.
KaTeX units are different than CSS units.

KaTeX Unit Value KaTeX Unit Value
em CSS em bp \(\frac 1{72}\) inch × F × G
ex CSS ex pc 12 KaTeX pt
mu \(\frac 1{18}\) CSS em dd \(\frac{1238}{1157}\) KaTeX pt
pt \(\frac 1{72.27}\) inch × F × G    cc \(\frac{14856}{1157}\) KaTeX pt
mm 1 mm × F × G nd \(\frac{685}{642}\) KaTeX pt
cm 1 cm × F × G nc \(\frac{1370}{107}\) KaTeX pt
in 1 inch × F × G sp \(\frac 1{65536}\) KaTeX pt
where: F = \(\large \frac{\text{font size of surrounding HTML text}}{10\text{ pt}}\)
G = 1.21 by default, because KaTeX font-size is normally 1.21 × the surrounding font size. This value can be over-ridden by the CSS of an HTML page. For example, on this page, G = 1.0.

The effect of style and size:

Unit textstyle scriptscript huge
em or ex \(\rule{1em}{1em}\) \(\scriptscriptstyle\rule{1em}{1em}\) \(\huge\rule{1em}{1em}\)
mu \(\rule{18mu}{18mu}\) \(\scriptscriptstyle\rule{18mu}{18mu}\) \(\huge\rule{18mu}{18mu}\)
others \(\rule{10pt}{10pt}\) \(\scriptscriptstyle\rule{10pt}{10pt}\) \(\huge\rule{10pt}{10pt}\)